欢迎来到培训无忧网!

全国切换

咨询热线 400-001-5729

位置:培训无忧网 > 新闻资讯 > 考研考博 > 考研 >  考研数学常用公式概括

考研数学常用公式概括

来源:培训无忧网-云朵 发布人:云朵

2021-11-26 11:33:17|已浏览:140次

考研数学常用公式概括

    数学一直是考研最难的科目,数学公式也是考研必考内容,所以掌握数学公式,是每一位学子必备的学习任务。

一、常用诱导公式

公式一:

    设α为任意角,终边相同的角的同一三角函数的值相等:

    sin(2kπ+α)=sinα(k∈Z)

   cos(2kπ+α)=cosα(k∈Z)

    tan(2kπ+α)=tanα(k∈Z)

    cot(2kπ+α)=cotα(k∈Z)

公式二:

    设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

    sin(π+α)=-sinα

    cos(π+α)=-cosα

    tan(π+α)=tanα

    cot(π+α)=cotα

公式三:

    任意角α与-α的三角函数值之间的关系:

    sin(-α)=-sinα

    cos(-α)=cosα

    tan(-α)=-tanα

    cot(-α)=-cotα

公式四:

    利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

    sin(π-α)=sinα

    cos(π-α)=-cosα

    tan(π-α)=-tanα

    cot(π-α)=-cotα

公式五:

    利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

    sin(2π-α)=-sinα

    cos(2π-α)=cosα

    tan(2π-α)=-tanα

    cot(2π-α)=-cotα

公式六:

    π/2±α及3π/2±α与α的三角函数值之间的关系:

    sin(π/2+α)=cosα

    cos(π/2+α)=-sinα

    tan(π/2+α)=-cotα

    cot(π/2+α)=-tanα

    sin(π/2-α)=cosα

    cos(π/2-α)=sinα

    tan(π/2-α)=cotα

    cot(π/2-α)=tanα

    sin(3π/2+α)=-cosα

    cos(3π/2+α)=sinα

    tan(3π/2+α)=-cotα

    cot(3π/2+α)=-tanα

    sin(3π/2-α)=-cosα

    cos(3π/2-α)=-sinα

    tan(3π/2-α)=cotα

    cot(3π/2-α)=tanα

(以上k∈Z)

    注意:在做题时,将a看成锐角来做会比较好做。

诱导公式记忆口诀:

    上面这些诱导公式可以概括为:

对于π/2*k±α(k∈Z)的三角函数值,

    ①当k是偶数时,得到α的同名函数值,即函数名不改变;

    ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.

(奇变偶不变)

    然后在前面加上把α看成锐角时原函数值的符号。

(符号看象限)

例如:

    sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

    当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。所以sin(2π-α)=-sinα

上述的记忆口诀是:

    奇变偶不变,符号看象限。

    公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α

    所在象限的原三角函数值的符号可记忆

    水平诱导名不变;符号看象限。

    各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.

二、同角三角函数关系

1、倒数关系:

    tanα·cotα=1

    sinα·cscα=1

    cosα·secα=1

2、商的关系:

    sinα/cosα=tanα=secα/cscα

    cosα/sinα=cotα=cscα/secα

3、平方关系:

    sin^2(α)+cos^2(α)=1

    1+tan^2(α)=sec^2(α)

    1+cot^2(α)=csc^2(α)

4、同角三角函数关系六角形记忆法:

六角形记忆法:

    构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

    (1)倒数关系:对角线上两个函数互为倒数;

    (2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。

    (3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

三、两角和差公式:

1、两角和与差的三角函数公式:

    sin(α+β)=sinαcosβ+cosαsinβ

    sin(α-β)=sinαcosβ-cosαsinβ

    cos(α+β)=cosαcosβ-sinαsinβ

    cos(α-β)=cosαcosβ+sinαsinβ

    tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

    tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

2、二倍角公式:

二倍角的正弦、余弦和正切公式(升幂缩角公式)

    sin2α=2sinαcosα

    cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

    tan2α=2tanα/[1-tan^2(α)]

3、半角公式:

半角的正弦、余弦和正切公式(降幂扩角公式)

    sin^2(α/2)=(1-cosα)/2

    cos^2(α/2)=(1+cosα)/2

    tan^2(α/2)=(1-cosα)/(1+cosα)

    另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)

4、万能公式:

    sinα=2tan(α/2)/[1+tan^2(α/2)]

    cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

    tanα=2tan(α/2)/[1-tan^2(α/2)]

    本文由培训无忧网广州新东方考研课程顾问整理发布,希望能够对想参加广州考研培训的同学有所帮助。更多考研课程信息欢迎关注培训无忧网考研培训频道或添加老师微信:15033336050

      注:尊重原创文章,转载请注明出处和链接 https://www.pxwy.cn/news-id-5014.html 违者必究!部分文章来源于网络由培训无忧网编辑部人员整理发布,内容真实性请自行核实或联系我们,了解更多相关资讯请关注考研频道查看更多,了解相关专业课程信息您可在线咨询也可免费申请试课。关注官方微信了解更多:150 3333 6050

留下你的信息,课程顾问老师会一对一帮助你规划更适合你的专业课程!
  • 姓名:

  • 手机:

  • 地区:

  • 想学什么:

  • 培训无忧网
免 费 申 请 试 听
提交申请,《培训无忧网》课程顾问老师会一对一帮助你规划更适合你的专业课程!