2021-11-24 10:11:54|已浏览:175次
随着当今社会科学技术的持续发展,和人们对编程技术的发展,近年来AI产业正在飞速发展,并且当今社会也有越来越多的人工智能产业实践,所以越来越多的人都开始关注人工智能方面,由此可见人工智能在当今社会中的热度,今天就来讲讲人工智能与数据挖掘的关系。
机器学习是人工智能的一个分支,作为人工智能的核心技术和实现手段,通过机器学习的方法解决人工智能面对的问题。机器学习是通过一些让计算机可以自动“学习”的算法,从数据中分析获得规律,然后利用规律对新样本进行预测。
机器学习是人工智能的重要支撑技术,其中深度学习就是一个典型例子。深度学习的典型应用是选择数据训练模型,然后用模型做出预测。例如,博弈游戏系统(Deep Blue)重于探索和优化未来的解空间(Solution Space),而深度学习则是在博弈游戏算法(例如Alpha Go)的开发上付诸努力,取得了世人瞩目的成就。
下面以自动驾驶汽车研发为例,说明机器学习和人工智能与数据挖掘的关系。
要实现自动驾驶,就需要对交通标志进行识别。首先,应用机器学习算法对交通标志进行学习,数据集中包括数百万张交通标志图片,使用卷积神经网络进行训练并生成模型。然后,自动驾驶系统使用摄像头,让模型实时识别交通标志,并不断进行验证、测试和调优,最终达到较高的识别精度。
当汽车识别出交通标志时,针对不同的标志进行不同的操作。例如,遇到停车标志时,自动驾驶系统需要综合车速和车距来决定何时刹车,过早或过晚都会危及行车安全。除此之外,人工智能技术还需要应用控制理论处理不同的道路状况下刹车策略,通过综合这些机器学习模型来产生自动化的行为。
数据挖掘和机器学习的关系越来越密切。例如,通过分析企业的经营数据,发现某一类客户在消费行为上与其他用户存在明显区别,并通过可视化图表显示,这是数据挖掘和机器学习的工作,它输出的是某种信息和知识。企业决策人员可根据这些输出人为改变经营策略,而人工智能是用机器自动决策来代替人工行为,从而实现机器智能。
数据挖掘是从大量的业务数据中挖掘隐藏的、有用的、正确的知识,促进决策的执行。数据挖掘的很多算法都来自机器学习和统计学,其中统计学关注理论研究并用于数据分析实践形成独立的学科,机器学习中有些算法借鉴了统计学理论,并在实际应用中进行优化,实现数据挖掘目标。
机器学习的演化计算深度学习等方法近年来也逐渐跳出实验室,从实际的数据中学习模式,解决实际问题。数据挖掘和机器学习的交集越来越大,机器学习成为数据挖掘的重要支撑技术。
总结:机器学习为人工智能和数据挖掘提供了底层的技术支撑。反过来说,机器学习也需要大量的有效数据进行训练,所以机器学习和数据挖掘是相互促进的。
本文由培训无忧网长沙牛耳教育专属课程顾问整理发布,希望能够对想参加长沙大数据分析培训的学生有所帮助。更多大数据分析培训课程资讯欢迎关注培训无忧网大数据人工智能培训频道或添加老师微信:1503333605010
注:尊重原创文章,转载请注明出处和链接 https://www.pxwy.cn/news-id-4685.html 违者必究!部分文章来源于网络由培训无忧网编辑部人员整理发布,内容真实性请自行核实或联系我们,了解更多相关资讯请关注人工智能频道查看更多,了解相关专业课程信息您可在线咨询也可免费申请试课。关注官方微信了解更多:150 3333 6050