2021-12-31 09:12:07|已浏览:125次
数列就是一坨数。可以有限个数也可以无限个数,可以有相等的也可以全不相等也可以全都相等。按照数列的表达形式不同,题目中经常出现的数列大概可以分为那么两种:
第一是用通项公式表示的。把an用n来表示。表明数值与其编号的关系。最常见的是等差数列an=a1+(n-1)d,和等比数列an=a1*q^(n-1)。求和问题也是很常见的。两个求和公式。等差数列求和公式=(首项+末项)*项数/2,不难记。等比数列前n项和公式a1*(1-q^n)/(1-q),也不复杂,念顺了就行了。特别的当无穷等比数列的公比q的绝对值小于1的时候,就是说-10,所以该等比数列的所有项的和可以求出来,等于a1/(1-q),不难算。这个公式经常被用于近似等比数列中某几项的和,求其范围。因为不管挑出多少项来,其和肯定比全部的和要小,所以a1/(1-q)就是上限。第二就是那种后一项用前一项或者前几项来表示的。比方说给了a1, a2,然后说对于任何n>2,an=an-1 - an-2之类的,然后让你求前100项和之类的。这种题肯定有规律。把前面十项八项的都算出来,别怕麻烦,然后加加就发现,从1开始,每4个数,或者6个数,或者每p个数的和都是一个数d,然后用乘法看看前100个里面有几个p个数就有几个d,若是不能整除,差几个就单独加上。要细心。
本文由培训无忧网新东方教育专属课程顾问老师整理发布,更多GMAT考试培训课程信息可关注培训无忧网GMAT考试培训频道或添加老师微信:15033336050
注:尊重原创文章,转载请注明出处和链接 https://www.pxwy.cn/news-id-11406.html 违者必究!部分文章来源于网络由培训无忧网编辑部人员整理发布,内容真实性请自行核实或联系我们,了解更多相关资讯请关注GMAT考试频道查看更多,了解相关专业课程信息您可在线咨询也可免费申请试课。关注官方微信了解更多:150 3333 6050